Physik
Leitgedanken zum Kompetenzerwerb
Prozessbezogene Kompetenzen zurücksetzen
  • 2.1 Erkenntnisgewinnung
    • 2.1 Erkenntnisgewinnung
    • Phänomene und Experimente zielgerichtet beobachten und ihre Beobachtungen beschreiben
    • Hypothesen zu physikalischen Fragestellungen aufstellen
    • Experimente zur Überprüfung von Hypothesen planen (unter anderem vermutete Einflussgrößen getrennt variieren)
    • Experimente durchführen und auswerten, dazu gegebenenfalls Messwerte erfassen
    • Messwerte auch digital erfassen und auswerten (unter anderem Messwerterfassungssystem, Tabellenkalkulation)
    • mathematische Zusammenhänge zwischen physikalischen Größen herstellen und überprüfen
    • aus proportionalen Zusammenhängen Gleichungen entwickeln
    • mathematische Umformungen zur Berechnung physikalischer Größen durchführen
    • zwischen realen Erfahrungen und konstruierten, idealisierten Modellvorstellungen unterscheiden (unter anderem Unterschied zwischen Beobachtung und Erklärung)
    • Analogien beschreiben und zur Lösung von Problemstellungen nutzen
    • mithilfe von Modellen Phänomene erklären und Hypothesen formulieren
    • Sachtexte mit physikalischem Bezug sinnentnehmend lesen
    • ihr physikalisches Wissen anwenden, um Problem- und Aufgabenstellungen zielgerichtet zu lösen
    • an außerschulischen Lernorten Erkenntnisse gewinnen beziehungsweise ihr Wissen anwenden
  • 2.2 Kommunikation
    • 2.2 Kommunikation
    • zwischen alltagssprachlicher und fachsprachlicher Beschreibung unterscheiden
    • funktionale Zusammenhänge zwischen physikalischen Größen verbal beschreiben (zum Beispiel „je-desto“-Aussagen) und physikalische Formeln erläutern (zum Beispiel Ursache-Wirkungs-Aussagen, unbekannte Formeln)
    • sich über physikalische Erkenntnisse und deren Anwendungen unter Verwendung der Fachsprache und fachtypischer Darstellungen austauschen (unter anderem Unterscheidung von Größe und Einheit, Nutzung von Präfixen und Normdarstellung)
    • physikalische Vorgänge und technische Geräte beschreiben (zum Beispiel zeitliche Abläufe, kausale Zusammenhänge)
    • physikalische Experimente, Ergebnisse und Erkenntnisse – auch mithilfe digitaler Medien – dokumentieren (zum Beispiel Skizzen, Beschreibungen, Tabellen, Diagramme und Formeln)
    • Sachinformationen und Messdaten aus einer Darstellungsform entnehmen und in andere Darstellungsformen überführen (zum Beispiel Tabelle, Diagramm, Text, Formel)
    • in unterschiedlichen Quellen recherchieren, Erkenntnisse sinnvoll strukturieren, sachbezogen und adressatengerecht aufbereiten sowie unter Nutzung geeigneter Medien präsentieren
  • 2.3 Bewertung
    • 2.3 Bewertung
    • bei Experimenten relevante von nicht relevanten Einflussgrößen unterscheiden
    • Ergebnisse von Experimenten bewerten (Messfehler, Genauigkeit, Ausgleichsgerade, mehrfache Messung und Mittelwertbildung)
    • Hypothesen anhand der Ergebnisse von Experimenten beurteilen
    • Grenzen physikalischer Modelle an Beispielen erläutern
    • Informationen aus verschiedenen Quellen auf Relevanz prüfen
    • Darstellungen in den Medien anhand ihrer physikalischen Erkenntnisse kritisch betrachten (zum Beispiel Filme, Zeitungsartikel, pseudowissenschaftliche Aussagen)
    • Risiken und Sicherheitsmaßnahmen bei Experimenten und im Alltag mithilfe ihres physikalischen Wissens bewerten
    • Chancen und Risiken von Technologien mithilfe ihres physikalischen Wissens bewerten
    • Technologien auch unter sozialen, ökologischen und ökonomischen Aspekten diskutieren
    • im Bereich der nachhaltigen Entwicklung persönliche, lokale und globale Maßnahmen unterscheiden und mithilfe ihres physikalischen Wissens bewerten
    • historische Auswirkungen physikalischer Erkenntnisse beschreiben
    • Geschlechterstereotype bezüglich Interessen und Berufswahl im naturwissenschaftlich-technischen Bereich diskutieren

Operatoren

Anhänge zu Fachplänen

3.6.2.2 Ma­gne­ti­sches Feld

Die Schü­le­rin­nen und Schü­ler un­ter­su­chen und er­läu­tern die Ur­sa­che so­wie die Struk­tur sta­ti­scher ma­gne­ti­scher Fel­der. Dar­über hin­aus sind sie in der La­ge, ho­mo­ge­ne Fel­der und die Be­we­gung ge­la­de­ner Teil­chen dar­in auch quan­ti­ta­tiv zu be­schrei­ben. Sie ver­glei­chen die Struk­tur des elek­tri­schen und ma­gne­ti­schen Fel­des so­wie des Gra­vi­ta­ti­ons­fel­des.

Die Schü­le­rin­nen und Schü­ler kön­nen
(1)

die Struk­tur ma­gne­ti­scher Fel­der be­schrei­ben (Feld­li­ni­en, ho­mo­ge­nes Feld, ein­fa­che nichtho­mo­ge­ne Fel­der, Feld um ei­nen ge­ra­den Lei­ter, Hand­re­gel)

(2)

die Kraft­wir­kung auf ei­nen strom­durch­flos­se­nen Lei­ter in ei­nem Ma­gnet­feld er­läu­tern (ma­gne­ti­sche Fluss­dich­te \(\vec{B}\) , \(F=B\cdot I \cdot s\))

(3)

die Kraft­wir­kung auf ei­ne elek­tri­sche La­dung in ei­nem Ma­gnet­feld er­läu­tern (Lor­ent­z­kraft, Drei-Finger-Regel, \(F_{\scriptscriptstyle \mathrm{L}} = q \cdot v \cdot B\))

(4)

das Ma­gnet­feld ei­ner schlan­ken Spu­le un­ter­su­chen und be­schrei­ben
(\(B=\mu_{\scriptscriptstyle 0} \cdot \mu_{\scriptscriptstyle \mathrm{r}} \cdot \frac{\displaystyle n} {\displaystyle l}\cdot I\))

(5)

die Be­we­gung ge­la­de­ner Teil­chen senk­recht zu ei­nem ho­mo­ge­nen Ma­gnet­feld be­schrei­ben und hier­bei ih­re Kennt­nis­se aus der Me­cha­nik an­wen­den (zum Bei­spiel Mas­sen­spek­tro­graph)

(6)

die Be­we­gung ge­la­de­ner Teil­chen in ge­kreuz­ten ho­mo­ge­nen elek­tri­schen und ma­gne­ti­schen Fel­dern er­klä­ren (zum Bei­spiel Wien'sches Fil­ter)

(7)

Ge­mein­sam­kei­ten und Un­ter­schie­de zwi­schen ma­gne­ti­schen, elek­tri­schen und Gra­vi­ta­ti­ons­fel­dern be­schrei­ben


Umsetzungshilfen
Hinweis
Die Beispielcurricula, Synopsen und Kompetenzraster sind bei den inhaltsbezogenen Kompetenzen des jeweiligen Faches zu finden.